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The brain mechanisms that integrate the separate features of sensory input into
a meaningful percept depend upon the prior experience of interaction with the
object and differ between categories of objects. Recent studies using representational
similarity analysis (RSA) have characterized either the spatial patterns of brain activity
for different categories of objects or described how category structure in neuronal
representations emerges in time, but never simultaneously. Here we applied a novel,
region-based, multivariate pattern classification approach in combination with RSA to
magnetoencephalography data to extract activity associated with qualitatively distinct
processing stages of visual perception. We asked participants to name what they see
whilst viewing bitonal visual stimuli of two categories predominantly shaped by either
value-dependent or sensorimotor experience, namely faces and tools, and meaningless
images. We aimed to disambiguate the spatiotemporal patterns of brain activity between
the meaningful categories and determine which differences in their processing were
attributable to either perceptual categorization per se, or later-stage mentalizing-related
processes. We have extracted three stages of cortical activity corresponding to low-
level processing, category-specific feature binding, and supra-categorical processing.
All face-specific spatiotemporal patterns were associated with bilateral activation of
ventral occipito-temporal areas during the feature binding stage at 140–170 ms. The
tool-specific activity was found both within the categorization stage and in a later period
not thought to be associated with binding processes. The tool-specific binding-related
activity was detected within a 210–220 ms window and was located to the intraparietal
sulcus of the left hemisphere. Brain activity common for both meaningful categories
started at 250 ms and included widely distributed assemblies within parietal, temporal,
and prefrontal regions. Furthermore, we hypothesized and tested whether activity
within face and tool-specific binding-related patterns would demonstrate oppositely
acting effects following procedural perceptual learning. We found that activity in the
ventral, face-specific network increased following the stimuli repetition. In contrast, tool
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processing in the dorsal network adapted by reducing its activity over the repetition
period. Altogether, we have demonstrated that activity associated with visual processing
of faces and tools during the categorization stage differ in processing timing, brain areas
involved, and in their dynamics underlying stimuli learning.

Keywords: visual perception, feature binding, magnetoencephalography, representational similarity analysis,
visual processing stages, sensorimotor associations, value, repetition effects

INTRODUCTION

There is an emerging view that the brain mechanisms that
integrate the different features of sensory input into a meaningful
percept are shaped by the experience of the perceiver when
learning to interact with objects of distinct categories (e.g.,
Reichert et al., 2014). Previous functional magnetic resonance
imaging (fMRI) studies have given support to this view by
demonstrating that the recognition of visual objects that differ
in the way that they are typically interacted with, engage distinct
cortical areas. Specific spatial patterns of neuronal responses were
found for a number of categories of objects, including faces,
animals, houses, places, tools, artificial objects, etc. (Ishai et al.,
2000; Henderson et al., 2011; Collins and Olson, 2014; Bracci and
Op de Beeck, 2016). For instance, it has been shown that there
is an extended network of cortical regions of the ventral stream
where faces induce significantly stronger activation than any
other category of objects studied (Allison et al., 1999; Kanwisher,
2000). In contrast, a number of studies designed to test the
relationship between the visual perception of objects such as
tools and the sensorimotor experience for which they afford, has
demonstrated that object associated regions involve areas in the
dorsal visual stream and premotor system (Grèzes and Decety,
2002; Beauchamp and Martin, 2007; Schubotz et al., 2014).

It, however, remains unclear whether these differences in
cortical topography are related to perceptual categorization
per se, or instead reflect later processes of mental access
to the meanings that follow object recognition. In order to
distinguish between these alternative hypotheses we utilized the
high temporal resolution afforded by magnetoencephalography
(MEG), and adopted the three-stage processing framework
(Del Cul et al., 2007). This framework suggests that “localized
recurrent processing” for a time window 150–250 ms represents
an intermediate stage between stimulus category insensitive low-
level processing (<120 ms), and late stage of conscious awareness
that is correlated with subjective report processing (after 270 ms).
This intermediate stage is characterized by category-specific
activity that contributes to the subsequent transition toward
conscious access of representation, but does not yet correspond
to a full-blown conscious state. In the present study, we pay
special attention to this stage in order to investigate the neuronal
processing that forms a consciously accessible representation
through integration of the low-level features of sensory input. In
particular, we aim to analyze differences in processing for two
categories of objects which differ substantially in the types of
experience normally associated with their interaction.

The ecological approach (Gibson, 1979) states that any act
of perception is determined by both features of the agent and

that of the environment. However, it remains unknown as to
what the relative contribution of these features are and how they
interact to give emergence to a perception. Some neurobiological
models of perception such as Fagg and Arbib (1998) or Schubotz
(2007) have suggested that object perception is based upon
access to motor schemas pertaining to interaction with the object
without explicit execution of the motor command. Behind such
models there is the notion that perception has evolved as an
associative appendage over a set of relatively independent visual
control systems for the different motor outputs represented
by independent pathways from the visual receptors through
to the motor nuclei (Goodale and Milner, 1992). A binding
mechanism based on sensorimotor associations is well suited for
information integration when perceiving objects with a narrow
set of predefined actions, such as tools, utensils, or sports
equipment. In these cases, the environment informs executive
mechanisms that constrain the way by which stimulus features
may be integrated and represented by the organism for future
use. However, for a large number of object categories, such as
those involving living things, the possible set of interactions has a
large degree of uncertainty and in these cases, direct association
between sensory inputs and motor outputs seems to be an
implausible mechanism of feature binding

An alternative source of constraints originates from the
neuronal dynamics of the organism itself. The linkage of
neuronal groups by recursive exchange of signals across multiple,
parallel, and reciprocal connections (Edelman, 1993), can lead
to selective synchronization. This synchronized activity among
neuronal groups can form coherent circuits corresponding to
perceptual categories (Sporns et al., 1991). This mechanism
is substantially different from a sensorimotor one. Firstly, it
integrates the information by means of a system’s relaxation
dynamics from perturbation caused by stimulus, to a state
that represents a whole object. Secondly, features originating
from self-organized dynamics, do not have a direct adaptive or
functional meaning. They constitute how well the influence of
a stimulus is suitable to sustain or suppress emergent dynamics
of the system and so should be determined with respect to the
system parameters.

Edelman and Tononi (2000) have suggested a model
for a dynamical multi-dimensional neural reference space.
Initial dominant axes of the reference space are related to
dimensions that are concerned with the phenotypic aspects
of organism itself, whilst incoming signals from the external
environment (non-self) are assimilated with respect to these axes.
Authors have related such constraining aspects, selected during
evolution of organisms, to values and called the appropriate
mechanism of perception as value-dependent one. The main
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difference between sensorimotor-based and value-dependent
mechanisms of perception lay in the different roles that sensory
information plays in their respective integrative processes. In
the former, sensory input through sensorimotor associations
guides execution of intentionally driven object recognition. For
the functioning of this mechanism, it is important that one’s
current task does not divert attention from the perception.
In the latter, input from the external environment “feeds” the
brain’s dynamics in a manner independent of the consciously
performed task and “automatically” biases the competition
between neuronal groups in favor of one representation over
others. A winning state represents a whole object in the value-
dependent reference space and simultaneously segregates it
from the “background.” Sensorimotor features are determined
in the terms of real-world manipulations and required to
be independently representable (and later bound together
in a part-to-part manner). A value-dependent mechanism
instead integrates information across some incommensurable
dimensions [e.g., valence, dominance (Koelstra et al., 2012), “time
reference” (Bode et al., 2014)] and does not perform a linkage of
separate representations.

These two mechanisms of categorization are manifesting
different types of experience of the perceiver when learning to
interact with objects. Sensorimotor experience is acquired by
creating new, or reweighting of existing associations under the
control of backward propagation of an error. Computation of
the error between some target and the actual state does not
require learning. Rather, it is the action itself, that allows for
a transfer to the target state that must be learnt. Nevertheless,
training is relatively straightforward and so learning occurs
quickly because there is an explicit state that is the target of
the action. In contrast, value-dependent experience does not
have an explicitly representable target state. Instead, it changes
parameters of dynamical system to set up a new stable state that
depends both on persistent external influences and principles
of self-organization (e.g., Bak et al., 1988). In other words,
value-dependent experience is acquired through a prolonged
training and does not result in getting good at reaching a
desirable state but instead leads to a change in the value
reference structure that makes an actual state more desirable.
The long duration of an external influence is a principal but
not exclusive characteristic that indicates the degree of value-
dependent experience. Furthermore, the intensity of influences
(as expressed by neural system arousal) determines how high
in the hierarchy of values the experience can affect changes.
The same effect is achieved when influences act earlier in the
ontogenesis. Faces, such as those that we use as the stimuli
in the study, are the percepts with the which the normal
perceiver demonstrates a high level of expertise. They usually
bring emotional content and skills in facial recognition are
acquired soon after birth. We suggest that faces represent
a category shaped by value-dependent experience. On the
other hand, tools lack all of these characteristics and are
instead learnt through functional manipulations making them
a good example of an object category whose representation is
dominated by the sensorimotor experience of interactions with
them.

MEG affords recordings of a high temporal resolution that
are well suited to isolating the spatiotemporal patterns of
neuronal activity corresponding to different stages of visual object
recognition. However, despite numerous efforts to improve
accuracy of neuronal source localization using encephalography
techniques (Wipf et al., 2010; Kozunov and Ossadtchi, 2015;
Sohrabpour et al., 2016), the information gained in many
experimental designs is insufficient to provide a comprehensive
and robust estimate of the spatial distribution of the neural
responses underlying perception of different classes of objects.
A significant step toward solving this problem has been
made through the use of multivariate pattern classification
techniques for encephalographic signal analysis (Rieger et al.,
2008; Ramkumar et al., 2013; Cichy et al., 2014; Wardle et al.,
2016). The basic idea is to conceptualize experimental activity
in multiple sensors as patterns and then discover statistical
relationships between these patterns according to different
experimental conditions. This turns the task into an immediate
application of pattern classification techniques readily available
from machine learning (Duda et al., 2000; Geurts, 2001).

The principal disadvantage of applications of pattern
classification techniques is that raw classifier outputs are difficult
to interpret. In order to work around this problem and extract
components of neuronal activity specific for distinct brain
functions, representational similarity analysis (RSA; Kriegeskorte
et al., 2008) was introduced. The strength of RSA is that it
allows to move from analyzing the accuracy of decodability
of patterns themselves, toward an estimation of the relation
of this decodability for the set of experimental conditions
to some model dependencies expressed by representational
dissimilarity matrices (RDMs). The application of RDMs
provides a simple and universal language for asking questions
about correspondence between relations among representations
established by a hypothesized model and the relations among
representations derived from the experimental data.

In the majority of cases where pattern classification methods
for encephalographic signals have been applied, analyses were
made in sensor space only. In some studies post-classification
localization of regressor coefficients were used to obtain
spatial patterns accompanying representation of particular brain
functions in source space (Van de Nieuwenhuijzen et al., 2013;
Clarke et al., 2015). Here we offer another way to extract
sufficiently precise spatial maps from MEG signals. A fine-scaled
distributed inverse solution is obtained before classification by
use of the sLORETA inverse operator (Pascual-Marqui, 2002).
Vertices are then combined into moderately coarse atlas-based
regions and only three principal components of activities across
each region are kept for training classifiers. This procedure
preserves the majority of the variance available for each region
and filters out the remaining noisy portion of it. In this manner,
we obtain a method which allows for the estimation of a location
and time-specific value of classification accuracy at every region
on the whole cortex. Following this, we will then demonstrate that
the subsequent application of RSA, which provides a contrast-
based measure instead of absolute accuracy of decodability, and
in combination with dimensional reduction of each regions to
three principal components, give grounds to believe that obtained
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values are directly comparable between regions with a non-equal
number of vertices.

In the present study using the MEG technique and applying
the novel region-based multivariate pattern classification
approach in combination with the RSA, we investigated
spatiotemporal patterns of neuronal activity that underlie the
formation of a meaningful percept for the two categories of
visual stimuli. These categories, namely faces and tools, were
chosen to be on the opposite ends of the spectrum according
to the prevalence of either value-dependent or sensorimotor
experience of interactions with them. While differences in
processing of faces and tools have been repeatedly reported,
it remained unclear whether these differences were related
to categorization itself or to much later performing of object
naming (Grèzes and Decety, 2002), dependent action (Beets
et al., 2010), working memory operation (Linden et al., 2012), or
introspection (Frässle et al., 2014). In this study, we made direct
experimental testing of alternative hypotheses that associate the
differences between brain areas engaged in processing of these
categories either to intermediate processing stage of perceptual
binding or otherwise to much later activation of response-related
brain processes. In addition to this, we tested if procedural
perceptual training has differential effects upon the mechanisms
of feature binding associated with the perception of faces and
tools. We interpret our results in a framework that assumes
the existence of two different binding mechanisms for classes
of objects differing by the prevalence of interactions that are
determined upon either prior value-dependent experience or
sensorimotor affordances.

MATERIALS AND METHODS

Participants
Twenty two volunteers (10 males, 12 females) with an average
age of 25.4 years (SD = 4.62) participated in the main
experiment. This study was carried out in accordance with
the recommendations of Declaration of Helsinki with written
informed consent from all subjects. The protocol was approved
by the ethics committee of Moscow State University of
Psychology and Education.

Stimuli
Overall during the main experiment, we used 26 bitonal (black
and white) Mooney images. To produce them, we blurred ∼100
grayscale photographs of faces, animals, plants, and tools with a
Gaussian filter and binarized them using a custom routine written
in MATLAB (MathWorks, Inc.). Some nonsensical fragments
of real grayscale photographs were also subjected to the same
procedure. All resulting images were 500× 500 pixels in size and
equalized in luminance (number of white pixels) and length of
the contours.

Following this, the images were shown to a group of 60
healthy volunteers, none of which would participate in the main
experiment, in order to select a set of 26 images that matched the
following characteristics: (A) two face, two tool, six animal, and
six plant images should be correctly identified by more than 95%

of subjects when seen for the first time; (B) two face and two tool
images should be correctly identified by less than 15% of subjects
when seen for the first time but should be correctly identified by
more than 90% of subjects when seen after the corresponding
original grayscale photograph had been shown; and (C) six
nonsensical images should be identified as non-meaningful by
more than 95% of participants.

The set of 10 images constituting the main subset of
stimuli comprised: two simply recognizable faces, two simply
recognizable tools, two naively unrecognizable faces, two naively
unrecognizable tools, and two nonsense images. The remainder
of the images constituted an auxiliary subset.

Procedure
The stimuli were displaying to the participants using Presentation
software (Neurobehavioral Systems Inc., United States) via a
computer with a 60 Hz frame rate and were back-projected on
a translucent white projection screen located 1.7 m in front of the
participants to provide an 8× 8 degrees visual angle.

The images were presented within four 16-min blocks
separated by breaks of roughly 5 min each. All images from
the main subset and four different images from the auxiliary
subset were shown during each block. Every image from the main
subset was presented 40 times during each block. Images from the
auxiliary subset were displayed 15 times during each block. They
were not intended to be analyzed in the study and were used to
maintain subjects’ attention. Stimuli were presented in a pseudo-
random order for duration of 800 ms with interstimulus intervals
varied randomly from 1000 to 1500 ms.

After each stimulus presentation, participants were required
to name aloud what they had seen in the picture. We did not
give a hint of how to name any picture except in the case
of the nonsensical images. We asked the participant to say
“nonsense” or “nothing” when they were unable to recognize a
meaningful object. All subject’s responses were written down by
the experimenter and recorded on a dictaphone. Later, during
an offline ascription of categories to participant’s responses, we
treated all appropriate responses as correctly categorized (for
example, “woman” in response to the presentation of a woman’s
face was treated as a correctly recognized face category). Overall,
the appropriate meaning was attributed to simply recognizable
faces images in 99% of presentations, to simply recognizable tool
images in 92%, and to nonsense images in 4%. Only trials with
correctly categorized stimuli were analyzed. Participants were
asked to delay their responses following a stimulus offset. We
excluded trials where the subject responded earlier than stimulus
had disappeared from the screen.

Between second and third blocks we carried out a fast learning
procedure during which a subject’s attention was guided to
facilitate a recognition of the “naively unrecognizable” stimuli
subtype. This procedure did not affect categorization of easily
recognizable faces and tools, nor the nonsense stimuli. In the
present study, we analyze only these three groups of images
(total six images; Figure 1). Therefore, we suppose that the only
effect influencing the processing of the stimuli reported here was
perceptual learning gained through repeated viewing of the same
stimulus.
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FIGURE 1 | Design of the experiment and model RDMs used for analysis. We presented six images of three groups of stimuli (two in each group): two meaningful
categories (faces and tools) and one that was nonsensical. Each image was presented by 40 times in a pseudorandom order in each of four blocks. Blocks 1 and 2
were combined to get 80 copies of each stimulus (first session), so as blocks 3 and 4 (second session). This provides 12 entries (6 images × 2 sessions) for the RSA
analysis. Three types of model RDMs were used. Type 1: “Stimulus recognizer” that required all pairs of between stimuli dissimilarity to be high except the pairs
between the same stimuli presented in first and second session. Type 2: “Meaningful category processing,” was used separately for face and tool categories. It
required higher dissimilarity between patterns for stimuli across category boundary than within category boundary. Type 3: one group processing versus the other
two, was used to extract either meaningfulness regardless of individual category differences or significant differences in one particular meaningful category
processing. Red arrows indicate: 1—tool stimuli are excluded from “face versus nonsense” model (and vice versa); 2—low dissimilarity within category boundary;
3—pairs between the same stimuli in first and second sessions were excluded in type 2 and 3 RDMs. See text for detail.

MEG Acquisition
Neuromagnetic activities were recorded with the helmet-shaped
306-channel detector array (“Vectorview,” Neuromag Elekta
Oy, Helsinki, Finland). In this study, data from 204 planar
gradiometers were used for analyses.

Prior to the MEG session, the positions of HPI coils were
digitized together with fiducial points using the 3D digitizer
“FASTRAK” (Polhemus, Colchester, VT, United States) and
were used to assess a subject’s head position inside the MEG
helmet every 4 ms. Later, offline position correction procedure
was applied to the recorded data to compensate for a head
movements. The mean change in the MEG sensor locations
during the experiment ranged from 3 to 12 mm across subjects.
The spatiotemporal signal space separation method (tSSS)
implemented by “MaxFilter” (Elekta Neuromag Oy software) was
used to suppress interference signals generated outside the brain.
An electrooculogram (EOG) was recorded using four electrodes
placed at the outer canthi of the eyes as well as above and below
the left eye. The MEG signals were recorded with a band-pass
filter of 0.1–330 Hz, digitized at 1000 Hz, and stored for offline
analysis.

MEG Data Preprocessing
The MEG data preprocessing was done using a combination of
tools from SPM8 (Litvak et al., 2011), Fieldtrip (Oostenveld et al.,
2011), and self-made routines in MATLAB environment. The
data were converted into SPM8 format and epoched from 500 ms
prior to stimulus onset and lasted until 1000 ms post-stimulus.
Then information from the experimenters’ recorded observations

were applied in order to select trials with correctly categorized
images only and exclude trials with speech production artifacts.
After that, data were low-pass filtered at 24 Hz, baseline corrected
and merged to combine first and second blocks together as
well as third and fourth blocks. The last step was done to
provide two sections of 80 presentations (or less after artifact
trial rejection) for each stimulus. Hereinafter these two sections
are used to define two independent entries of every stimulus (see
Figure 1).

Following this, an independent component analysis based
artifact removal procedure was applied separately for each
subject. A set of 10 random trials of each stimulus were
drawn from both sections to produce a set of 60 trials and
this set was decomposed into independent components. We
visually inspected time courses, spectra and topologies of first 20
components and removed components comprising EOG, cardiac
or muscle artifacts. After that, trials with residual artifact activity
were rejected automatically using an algorithm that detects large
deviations in the amplitude values based on adaptive thresholds
for each person and channel.

Source-Localization and Whole Cortex
Atlas-Based Regions Definition
All results presented in this study are based on source-
space analysis. To transfer the data into source-space, we
applied an anatomically constrained inverse problem solver
forcing the sources to lie on a tessellated mesh of the cortical
mantle. The sources are considered as dipoles with fixed
orientations normal to the local curvature of the mesh.
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The meshes were obtained on the basis of high-resolution
structural T1-weighted MRIs acquired on a 1.5 T Toshiba
ExcelArt Vantage scanner (TR = 12 ms, TE = 5 ms,
flip angle = 20◦, slice thickness = 1.0 mm, voxel
size = 1.0 × 1.0 × 1.0 mm3). These structural scans were
segmented and the gray-matter segment was used to construct
a continuous triangular mesh representing the neocortex using
FreeSurfer software (Dale et al., 1999).

The fiducial points digitized during MEG acquisition were
then used to co-register the MEG and MRI spaces and meshes
for every subject were downsampled to have 5002 vertices. These
procedures as well as an overlapping spheres forward model
and sLORETA inverse operator calculation were performed with
Brainstorm software (Tadel et al., 2011).

In order to solve the problem of source co-registration across
subjects, as well as to reduce a number of entries for the analysis,
we used an automated labeling system for subdividing the human
cerebral cortex into gyral and sulcus based regions as it is
implemented in FreeSurfer. We chose Destrieux Atlas with 148
regions covering almost all cortical mantle (with an exception
of some middle wall structures). Some small regions of this atlas
were combined into larger ones (in the main in anterior regions
of the cortex), while some oblong regions of temporal lobe were
divided on posterior and anterior parts. Overall, we have obtained
82 atlas based regions. A list of these regions and their MNI
coordinates of the seed vertices are given in Table 1. This table
also contains the acronyms used from hereon to refer to the
regions in the text. Every region of this list could consist of
different number of vertices for each subject but represents the

same anatomical structure. This allows for direct comparison of
regional brain activity across subjects.

Pattern Classification
We used a MATLAB implementation of linear discriminant
analysis (LDA) on the source-space transferred data. The time
window used for analysis was taken from 100 ms prior to stimulus
onset and lasted until 700 ms post-stimulus. Before classification,
we resampled time courses with ratio 10:1 in order to reduce the
number of entries for the analysis. This provided 81 time points
with 10 ms resolution—the finest time resolution we report in this
study.

To improve the signal to noise ratio, trials were averaged into
pseudo trials. Every stimulus fell under the classification two
times corresponding to the two sections, so the set of 80 trials
(or less after artifact rejection) of any section was reduced to 10
pseudo trials by averaging a random selection of trials within this
section. Each pseudo trial was an average of between five and
eight trials. Conditions with less than 50 trials that were kept after
artifact rejection were excluded from the analysis (overall seven
such conditions were excluded across all subjects).

The input to the time-resolved classifier was specific for
each brain region and consisted of the scores at a given time
point for the three principal components of this region’s vertex
time courses. Generalization of the classifier was evaluated using
cross validation. For each pairwise comparison there were 18
trials used to train (nine from each stimulus class) and two
used to test the classifier (one from each class). This procedure
was repeated 100 times, each time with a new randomization.

TABLE 1 | List of all regions allocated in the study.

Region full name Alias MNI Region full name Alias MNI

Frontal pole FPole 25, 61, −5 Parahippocampal gyrus PhG 18, −20, −22

Superior frontal SF 18, 30, 44 Fusiform gyrus FG 37, −58, −19

Middle frontal MF 39, 40, 27 Medial occipito-temporal MedOT 26, −53, −11

Inferior frontal IF 50, 20, 11 Collateral sulcus anterior ColSa 41, −25, −26

Orbital frontal OF 23, 28, −16 Precuneus Precun 6, −66, 47

Ventral premotor VPM 40, 2, 34 Angular gyrus AngG 49, −59, 40

Dorsal lateral premotor DLPM 35, −10, 57 Inferior parietal gyrus IP 57, −35, 31

Insula Insula 40, 6, 1 Superior parietal gyrus SP 21, −65, 59

Cingular anterior CingA 3, 31, 23 Intraparietal sulcus IPS 30, −60, 43

Cingular posterior CingP 2, −26, 46 Parieto-occipital sulcus POS 14, −69, 24

Postcentral gyrus Postcen 43, −32, 49 Lunate sulcus LunS 30, −90, 9

Central sulcus Central 41, −16, 51 Cuneus Cuneus 3, −83, 21

Temporal pole TPole 32, 12, −38 Superior occipital sulcus SOS 27, −84, 25

Superior temporal gyrus anterior STGa 52, 8, −10 Superior occipital gyrus SOG 16, −93, 34

Superior temporal gyrus posterior STGp 55, −29, 16 Occipital sulcus anterior OSa 44, −73, −1

Middle temporal anterior MTa 65, −14, −20 Inferior occipital G and S IO 36, −90, −10

Middle temporal posterior MTp 67, −50, −2 Middle occipital gyrus MO 39, −84, 19

Superior temporal sulcus anterior STSa 52, −24, −6 Lingual gyrus LingG 8, −67, 0

Superior temporal sulcus posterior STSp 51, −61, 17 Calcarine sulcus Calcarine 17, −70, 7

Inferior temporal anterior ITa 58, −15, −28 Occipital pole OPole 15, −101, −4

Inferior temporal posterior ITp 50, −56, −20

The acronyms used in the text and MNI coordinates of the seed vertices are indicated. To denote a region in one hemisphere only, the prefixes “le” and “r” are used in the
text for left and right respectively.
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Classifier performance was quantified in terms of accuracy—
proportion of correctly classified pseudo trials. The decoding
analysis was run for all possible pairwise comparisons between
stimulus patterns for each region and each time point.

We solved the inverse problem with 5002 vertices spatial
resolution and only after that encapsulated data into the coarse
scale regions. Moreover, we did not represent activity within a
region by one component (averaging or taking one principal
components) but kept three components for classification and
only after that obtained a single measure for a region (and for
each time point).

RSA Model Definitions
We applied the RSA framework (Nili et al., 2014) to interpret
results of pairwise pattern classifications. Within this framework,
we constructed three types of simple model RDMs to separate
information content specific for: (1) differences between
individual stimuli; (2) differences between two groups of stimuli
(of a meaningful category and nonsense stimuli) beyond those
related to unique sensory features; (3) differences between one
group and the combined other two. These RDMs were not
intended to be comprehensive models of neural processing but
represented model dependencies by values normalized to a range
from 0 (low dissimilarity) to 1 (high dissimilarity). Relations
between the empirical RDMs and the model RDMs were assessed
by computing Spearman’s correlation coefficients between model
and empirical RDM values separately for each region, each time
point and each subject.

The first model, “Stimulus recognizer” (see Figure 1) required
all pairs of between stimuli dissimilarity to be high excluding
the pairs between the same stimuli presented in the first (blocks
1 and 2) and the second (blocks 3 and 4) sections. The
“Meaningful category processing” model was applied separately
for face and tool categories. Only subsets of pairwise comparisons
corresponding to either “face versus nonsense” or “tools versus
nonsense” pairs constituted RDMs in these cases (red arrow 1
on Figure 1 indicates excluded pairs). This model type required
higher dissimilarity between stimuli across category boundary
than within category boundary (red arrow 2 on Figure 1). The
third type of models were used to extract either differences
between meaningful and meaningless stimuli regardless of their
attribution to one specific category or instead differences specific
to one particular meaningful category (face or tool) processing. It
is worth noting that in type 2 and 3 models entries corresponding
to the classification of the same stimuli across sections were
excluded (red arrow 3 on Figure 1). Similarities between the same
stimuli across sections are quite high, however, these similarities
do not relate to category-specific structure. So excluding this
information from the type 2 and 3 RDMs we improve SNR
of the corresponding model relations. Whilst we kept entries
corresponding to classification of the different stimuli across
sections providing a generalization of the classification results.

Effects of Stimulus Repetition
Sources of activity involved in the categorization are
hypothesized to show amplitude modulation to repeated
presentations of the stimuli. To investigate repetition effects

for the activity of category-specific spatiotemporal patterns, we
applied a similar procedure used for the classification analysis
described above. All trials of a face stimulus for the first section
were divided into 10 segments with five to eight trials in each
of them (depending on the total number of trials available after
artifact rejection) and then averaged within the segments. Unlike
the classification analysis, in this case trials were taken in series,
so that the first segment corresponded to the beginning of the
section and the 10th corresponded to the end. We again took
three principal components of evoked responses within the
specific region but this time we superimposed them with the
weights equal to the coefficients of the boundary equations from
classification analysis. The motivation for this procedure was that
the resulting equivalent current dipole’s time course represented
activity within the region that best corresponded to category-
specific activity. Following this, we averaged activity across both
specific for categorization time interval and category’s exemplars.
Absolute values of the obtained results were then subjected to a
statistical analysis.

Statistical Testing
Characteristics of raw classifier performance were tested using
bootstrapping. We applied a bootstrap procedure that assigns
labels randomly to trials in the first place. After finding the
level where classification was better than chance, we tested the
variability of the classification onset time as well as the peak
times and accuracy values separately for different stimulus pairs
and different brain areas. For each performance characteristic,
we created 1000 bootstrapped samples by sampling participants
with replacement. This yielded an empirical distribution. Setting
p < 0.05, we rejected the null hypothesis if the 95% confidence
interval did not include 0.

For statistical testing of the results represented by Spearman’s
correlation coefficients we subjected all of them to Fisher
transformation in order to perform variance stabilization.
Following this, we used standard parametric statistical testing
and ensured that distributions are close to normal. The model-
specificity of spatial maps obtained by means of the proposed
region-based RSA were estimated using multivariate analysis of
variance (MANOVA).

In order to perform significance testing for the main part
of the results we applied statistical parametric mapping (SPM,
Friston et al., 1994). The main idea behind SPM is to consider
an independent statistical model at each point in space and time
and then use the general linear model framework to describe
the variability in the data in terms of experimental effects and
residual variability. Hypotheses expressed in terms of the model
parameters were assessed at each region-time point with a
univariate t-test. For the adjustment to the problem of multiple
comparisons (82 regions × 81 time bins) we used an FDR
corrected threshold (p < 0.01) for testing models of types 1 and
2 and a FDR corrected threshold (p < 0.05) for testing type
3 models. Any region-time point statistics that were below the
threshold were treated as significant and we then determined the
onset time (for a given region) as the first significant time point
after stimulus onset. This approach was useful because we had
predicted that some regions were activated in more than a single
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time window during the investigated interval. It would be difficult
to discover such behavior with non-parametric cluster-based
statistical approaches.

For the investigation of stimulus repetition effects, we
used linear regression analysis for the amplitudes of signals
corresponding to spatiotemporal clusters of category-specific
activities. The hypotheses that a proposed regression models fit
the data well were assessed using an F-test.

RESULTS

Overview of Classification Performance
Decoding analysis was performed using LDA (Duda et al.,
2000) for all possible pairwise comparisons between visual
stimuli for each region-time point. Firstly, we examined whether
decoding performance was above chance for classification
performed on source-space data confined within different cortex
regions. Table 2 displays decodability characteristics averaged
across all subjects for the five regions taken bilaterally in
primary/secondary visual cortex, occipito-temporal lobe, parietal

TABLE 2 | Subject level averages of the decodability characteristics for
classification performed on source-space data confined within five brain regions
(averaged across both hemispheres).

ROI Classifier Onset Peak Peak Mean (SD)

(ms) (ms) accuracy

OPole Face-nons 50 340 0.82 0.76 (0.053)

Tool-nons 50 90 0.83 0.75 (0.049)

Face-tool 50 90 0.85 0.76 (0.055)

All 502,3,4,5 902,3,4,5 0.83∗∗ 0.76 (0.051)∗∗

IO Face-nons 60 150 0.82∗ 0.72 (0.061)

Tool-nons 60 320∗ 0.76 0.70 (0.052)

Face-tool 60 150 0.80 0.71 (0.053)

All 601,5 1501,5 0.77∗∗ 0.71 (0.053)∗∗

FG Face-nons 60 150 0.75∗ 0.67 (0.044)

Tool-nons 60 340∗ 0.70 0.65 (0.041)

Face-tool 60 150 0.73 0.66 (0.039)

All 601,5 1501,5 0.70∗∗ 0.66 (0.038)∗∗

IPS Face-nons 70 310 0.66 0.63 (0.034)

Tool-nons 70 340 0.67 0.63 (0.034)

Face-tool 60 330 0.66 0.63 (0.031)

All 701 3201,5 0.66∗∗ 0.63 (0.032)∗∗

VPM Face-nons 100 480 0.63 0.60 (0.026)

Tool-nons 110 560 0.64 0.60 (0.038)

Face-tool 70 360 0.63 0.59 (0.024)

All 801,2,3 4601,2,3,4 0.62∗∗ 0.60 (0.028)∗∗

Classifier characteristics for different stimuli category pairs as well as averaged
across all stimulus pairs (in bold font) are shown. The onset time was determined
as the first above chance decoding accuracy time point (FDR < 0.01). Mean
accuracies were calculated on 50–700 ms time window. Numbers in superscript
indicate the second region of the pair for significant differences in the order
presented in the table. Single asterisks mark the characteristics that were
significantly different between marked contrast and the other two within the
same region. Double asterisks mark characteristics averaged across all stimulus
pairs for a region and displaying significant differences for every between regions
comparisons. See text for detail.

lobe, and premotor cortex. We have found that decoding
accuracy was above chance beginning at 50–80 ms after stimulus
onset for the majority of brain regions covering all cortex and
for all category pairs. Following the initial onset of statistical
significance, decoding performance rose to a peak and then
decayed slowly but remaining above chance until stimulus offset
for most regions.

Next we investigated whether decodability characteristics
depend on a particular brain region. Classifier performance
averaged across all stimulus pairs was examined. The significance
onset time was determined as the first above chance decoding
performance time point (FDR < 0.01). Mean accuracies were
calculated for the 50–700 ms time window. Differences between
regions at onset time, peak latency, and the maximum and mean
accuracies were tested using bootstrapping. We have found that
decodability onset time was significantly earlier for OPole than
for all other regions and was later for VPM than for IO and FG.
Peak latency replicated this pattern and was significantly earlier
for OPole than for all other regions, whilst VPM was later than
for all other regions. All pairwise differences of maximum and
mean accuracies for tested regions were significant.

Finally, we examined the category specificity of the
classification characteristics. In this case, and performed
separately for each region, we used bootstrapping to test
differences in decodability characteristics between different
category pairs. None of the onset times nor mean accuracy
differences were found to be significant. In IO and FG peak
latencies for tool versus nonsense contrast were significantly
later than for two other pairs. In IO and FG, the peak accuracy
of classification for faces versus nonsense contrast was also
significantly better than for the two other pairs. On the whole, we
find that the performance of region-based classifiers is sufficient
for reliable stimuli discrimination but is weak with relation to
stimulus-class specific differences and largely uninterpretable.

Can Region-Based RSA Provide
Model-Specific Localization of Activity?
A given value of the accuracy of decodability between, for
example, face and nonsense stimuli encapsulates differences
in low-level visual processing, meaning-dependent binding
and may be additional activity underlying response-related
processing. In order to separate the constituents of an overall
dissimilarity we applied the RSA technique (Nili et al., 2014).

To our knowledge, this is the first application of RSA to MEG
data computed in source-space and confined within separate
regions in an attempt to obtain spatial maps of the model-specific
activations of the cortex. Therefore, we examined whether
the region-based RSA provided plausible localization of model
activity. We took for every brain region, Fisher transformed
Spearman’s correlation coefficients between MEG experimental
data RDMs and three model RDMs: “Stimulus recognizer”; “face
versus nonsense”; and “tool versus nonsense,” and averaged
them across a time window at 50–400 ms (Figure 2). To
make significance testing feasible we then averaged values across
homologous regions of both hemispheres yielding 41 areas in
total. We then performed a MANOVA to test whether the vectors
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FIGURE 2 | Brain region specificity of the model-related activity. Averaged across subjects spatial maps averaged for 50–400 ms are shown. Higher value of
correlation in a region, expressed by Spearman’s correlation coefficient, means that within this region neuronal activity better fits to the function described by a
corresponding model. Resulting maps show plausible localization: low-level processing prevails in occipital areas while meaning-specific processing is shifted in the
anterior direction in category-specific way. Red arrows indicate characteristic regions for every model. MANOVA test result of model-specificity of spatial distribution
is presented under the maps. See text for detail.

of correlations corresponding to the 41 areas are significantly
different for the distinct models. The analysis has revealed that
means did not lie on the same line, i.e., the experimental data
had different spatial structures of relations with all three models:
χ2(40) = 66,63, p < 0.006. This provides evidence that distinct
functional components extracted by applying different models
have unique and persisting spatial distributions. Nevertheless,
the results reported in this subsection are based on averages
across long time intervals. In the following subsections, we move
to describe results from a complete time-resolved analysis to
investigate when and where a brain turns incoming sensory
signals into a meaningful percept.

Spatiotemporal Analysis Has Revealed
Three Successive Stages of Visual
Perception Processing
Here we report the results obtained by means of relation to
“Stimulus recognizer” and “Meaningful category processing”
models. The corresponding spatiotemporal clusters of neuronal
activity have allowed us to outline three successive stages of visual
perception processing. Some additional findings, confirming the
category independent character of the third stage as well as the
question of differences in the processing of the two meaningful
categories we left until the next subsection.

Activity related to the “Stimulus recognizer” model in many
aspects replicated the characteristics of raw classifier decodability

that was averaged across all stimulus pairs. The significance onset
time and peak time in posterior regions (see Figure 3, black lines)
repeated the values for classifier accuracy and were 50–80 and
90–100, respectively. The spatial map of the extracted activity
(see Figure 2) demonstrated a gradual decrease from the occipital
pole regions in the anterior direction. This spatial distribution
was very persistent in time and lasted without any changes from
the onset time up to the end of the studied interval. In anterior
temporal regions the onset time for “Stimulus recognizer” model
was at ∼100 ms (60–80 ms for classifier for the same regions).
Unlike for classifier accuracy, the correlation coefficients for
“Stimulus recognizer” in the central and prefrontal regions did
not exceed the significance threshold. Furthermore, the time
courses of “Stimulus recognizer” outputs were more stereotyped:
in the majority of regions, when the time courses exceeded a
given threshold, they peaked very fast (not later 150 ms) and then
slowly and monotonically decreased. This could speak in favor
of the idea that the “Stimulus recognizer” extracts activity with
simpler dynamics that we propose is attributable to a separate
brain function which we presume to correspond to low-level
sensory processing.

The “Meaningful category processing” model characterizes
the activity for which the categorical structure prevails over
differences between individual stimuli. This has allowed us to
determine the processing stage at which meaning-related visual
feature binding is performed. We found that this stage began not
earlier than 130 ms after stimulus onset (see Figure 3, blue lines).
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FIGURE 3 | Averaged across subjects time courses of relation of activity in specified regions to four model RDMs. Each row represents results successively for left
and right hemispheres for the localized region that is indicated in the left column. The common legend is applicable for all time courses: black line indicates time
course of Spearman’s correlation coefficient with “Stimulus recognizer” model; blue line—“face versus nonsense” processing; green line—“tool versus nonsense”
processing; cyan line—combined group of meaningful images versus nonsense stimuli processing. The discs of corresponding colors indicate time points where
relations significantly (FDR < 0.01 for black, blue, and green, and FDR < 0.05 for cyan) differ from 0. Red discs indicate time points where face category processing
is significantly different (FDR < 0.05) from both tools and nonsense stimuli processing; this face-specific activity was extracted through relation to the appropriate
type 3 model (see Figure 1 and text). Magenta discs indicate significant tool-specific activity (extracted in the similar way). Red arrows indicate some characteristic
time points of significance onset.

At this point activity of rFG was significantly correlated with the
“face versus nonsense” processing model (Figure 4). Following
this, in the time interval at 140–170 ms, a set of occipito-temporal

regions of ventral visual stream were active, with the maximum
in bilateral FG, IO, and OSa. Right insula also demonstrated
the model-related activation for this interval. Cunei and MO
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FIGURE 4 | Averaged across subjects spatial maps of the relationship of measured activity to the “face versus nonsense” processing model. Successive time
windows with persisted spatial distribution within each one are shown. Regions for which at least half of time points within the specified windows have significantly
different from zero correlation coefficients are shown. The figure combines information of both significance and averaged value of correlation. Red arrows indicate the
regions of the most prominent correlation to the model. Only newly appeared regions in the direction of increasing time are indicated.

in both hemispheres joined the previously indicated regions
∼20 ms later. From 190 to 240 ms, face category processing did
not reveal itself in any place on the cortex (except rIP where
some weak model-related activity in the interval 220–240 ms was
found).

At 250 ms, an extensive network of the same occipito-
temporal regions as found within the 140–170 ms window
were supplemented by bilateral ITp, leMTp, leSP, rSTSp, and

rAngG which started to distinguish faces from nonsense stimuli
processing. A 50 ms following this, model specific activity was
seen in left anterior temporal, motor and premotor areas which
was then followed by a number of frontal regions, leading to
the development of the distributed network that is thought to
underlie meaning related response formation. By 600 ms after
stimulus onset (but 200 ms before its offset) activity in ventral
visual streams ceased to discriminate faces from nonsense stimuli
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FIGURE 5 | Averaged across subjects spatial maps of relationship of measured activity to the “tool versus nonsense” processing model. We kept for the most part
the same grouping of time-points in the windows as for Figure 4 except for combining 140–190 ms in one window while showing separately 200–210 and
220–240 ms intervals. Regions for which at least half of time points within the specified windows have significantly different from zero correlation coefficients are
represented only. The figure combines information for both significance and averaged value of correlation. Red arrows indicate the regions of the most prominent
correlation to the model. Only newly appeared regions in the direction of increasing time are indicated.

processing. Only some lateral temporal, parietal and motor
regions continued to discriminate between classes of stimuli.

Figure 5 displays the spatial maps of regions with significant
differences between the tool and nonsense stimuli processing.
The most prominent effect seen here is that the significance
onset time of tool category processing was never earlier
than 200 ms after stimulus onset (see also Figure 3, green
lines). At this moment two areas of the left dorsal visual

stream, leSOS and leIPS, started to significantly correlate
with the “tool versus nonsense” processing model. After
another 20 ms, leAngG and precunei in both hemispheres
joined leIPS while leSOS ceased to be related to the
model.

As was similar in the case with face processing, at 250 ms a
large set of brain structures of ventral visual pathway (namely
ITp, FG, and especially MedOT) started to differentiate between
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tool and nonsense stimuli processing. Additionally, the parietal,
motor, and premotor areas showed some model-specific activity
at this time. After 300 ms, some frontal regions of right
hemisphere also began to demonstrate meaning-specific activity.
It is worth noting that tool category processing appeared
first in the left hemisphere but in the time interval at 250–
400 ms processing shifted to the right hemisphere. However,
after 400 ms it largely returned to the left hemisphere. By
600 ms, no activity in the cortex was able to discriminate
tool from nonsense stimuli processing. This effect was even
more pronounced in processing of tool stimuli than that of
faces.

What Is Specific for Particular
Meaningful Category Processing and
What Is Common for Meaning
Formation?
The type 2 models do not allow the definition of activity
that is specific for the processing of a certain category of
meaningful stimuli. Therefore, to examine significant distinctions
between face and tool category formation we applied the
type 3 (see Figure 1) models. These models are similar
to type 2 but represent all stimuli together, and treat the
stimuli of an alternative meaningful category as the stimuli
of “nonsense” group. Application of type 3 models has
allowed us to avoid the detection of total differences between
the processing of two categories (as if we used RDM to
recognize directly between face and tool categories) and to
analyze only that which are relevant for meaning-specific
activity. Table 3 lists all brain regions and time intervals
for which a category-specific activity was detected (see also
Figure 6).

We have found that all face-specific activity happened within
interval of 140–170 ms after stimulus onset. It was most
pronounced throughout this period in IO (also known as
occipital face area), and FG comprising fusiform face areas. Also,
face-specific processing exceeded the significance threshold in
leLingG and leMO at the same interval and in bilateral OSa and
rLunS 10–20 ms later.

We have detected tool-specific activity before 250 ms and
also at later intervals. The leIPS for 210–220 ms window
demonstrated both high statistical significance and a high value of
correlation with the corresponding RDM. Following 250 ms after
stimulus onset, rVPM was indicated in the 300–330 ms window;
as well as also the leMTp and leSTSp for the 410–440 ms
window where we observed a moderate value of correlation
to the model that narrowly exceeded threshold. In contrast,
leVPM for the 530–560 ms interval had a moderate statistical
significance but low value of correlation. It is worth noting
that altogether these regions match exactly with the well-known
network of tool preferring regions of Beauchamp and Martin
(2007).

In order to examine the opposite problem of investigating
the spatiotemporal structure common to processing of both
meaningful categories of objects, we again tested the relation
between measured data and the type 3 model, but this time

we forced the dissimilarity to be low within the group by
combining both the meaningful categories. In Figure 6, the cyan
colored patches indicate regions common to processing of both
meaningful categories and for successive time windows with
persistent dynamics within each one (see also Figure 3, cyan
lines).

At 250 ms after stimulus onset, activity common to
meaning formation started to be significant. Some adjoined
regions in occipito-temporal areas of right hemispheres
exceeded the significance threshold and remained active
for another 200–250 ms. For the homologous regions of
the left hemisphere, the significance onset time (where it
was applicable) was delayed for 20–30 ms with respect to
the onset time in right hemisphere. At 280 ms, motor–
premotor areas of the right hemisphere started to be significant
and this state was maintained until the end of the entire
interval that was analyzed. The activity of motor–premotor
areas of the left hemisphere exceeded the threshold only
∼200 ms later than the right. Overall, in this time period
the number of significant regions in right hemisphere was
about two times greater than in the left one. Comparing
Figures 4–6, it is easy to see that most of the significant
spatiotemporal patterns after 250 ms were common for all
three models. This suggests that these networks formed
after 250 ms following stimulus onset are an essential
part of meaning-specific processing that is performed in a
category independent manner. We interpret this finding as
a manifestation of the beginning of the third stage of visual
perception processing starting around 250 ms. From hereon
we refer to this third stage of perception as “supra-categorical”
processing.

TABLE 3 | A list of all regions and time intervals with significant distinctions
between processing of two meaningful categories.

Region Time window (ms)

Face-specific

leIO 140–170

rIO 140–170

leFG 140–180

rFG 140–160

leLingG 140–170

leMO 140–170

rLunS 150–170

leOSa 150–170

rOSa 160–170

Tool-specific

leIPS 210–220

rVPM 300–330

leMTp 410–440

leSTSp 410–440

leVPM 530–560

These spatiotemporal patterns were extracted through relation to the appropriate
type 3 model (see Figure 1) which require one meaningful category processing
is significantly different (FDR < 0.05) from both another meaningful category and
nonsense stimuli processing.
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FIGURE 6 | Averaged across subjects spatial maps of regions with specific for face or tool processing, as well as common regions for meaningful stimuli processing
regardless of their attribution to a certain category. Successive time windows with persistent spatial distribution within each one are shown. Regions for which at
least half of time points within the specified windows have significantly different from zero correlation coefficients are represented only. The figure (unlike Figures 4, 5)
does not provide value of correlation information. Instead, by color, we code either common or specific activity—please refer to the legend. Arrows indicate regions
with significant meaning-specific differences between faces and tools processing.

Different Effects of Stimulus Repetition
in the Category-Specific Spatiotemporal
Patterns of Activity for Faces and Tools
We tested here for the existence of repetition effects for the
activity of category-specific spatiotemporal patterns.

Based on the above results (for analyses that were independent
of amplitude changes in response to the repeated presentation of
the same stimulus) we have chosen activities in IO and FG regions
of both hemispheres within the 140–170 ms window as the
face-specific patterns related to binding processes. We have found

that amplitude of activity of the chosen spatiotemporal patterns
in the left hemisphere did not demonstrate significant repetition
effects: leIO, regression coefficient k = 0.05 [F(1,218) < 0.08,
p > 0.75]; leFG, k=−0.01 [F(1,218)= 0.007, p > 0.9]. However,
in the right hemisphere both regions demonstrated significant
repetition amplitude enhancement: rIO, k= 0.32 [F(1,218) > 4.5,
p < 0.04], rFG, k= 0.21 [F(1,218)= 5.6, p < 0.02].

A similar analysis was conducted for the activity in the time
window 210–220 ms for the IPS region of both hemispheres (tool-
specific activity was found only in the left hemisphere but we
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made symmetrical analyses for the sake of completeness). We
have found that unlike repetition enhancement in the regions of
ventral stream for face evoked responses, there was a significant
repetition suppression effect for processing of tool stimuli in
the dorsal region of the left hemisphere (leIPS): k = −0.11
[F(1,218) > 4.3, p < 0.04]. No significant repetition effect was
found in the right hemisphere: k = −0.02 [F(1,218) < 0.15,
p > 0.7].

DISCUSSION

The present study aimed to characterize how category structure
emerges in spatiotemporal patterns of brain activity and to
determine the role of distinct neuronal mechanisms responsible
for feature binding, dependent upon different object categories.
To address these issues, we applied RSA and tested simple models
by evaluating their ability to explain region-based time-varying
neural activity patterns in MEG data. We used two meaningful
image categories, namely faces and tools, that were chosen to be
on the opposite ends of a spectrum relating to the prevalence
of either value-dependent or sensorimotor experience based
interactions with objects of each class.

From our results, we draw several major conclusions. The
first outcome is methodological in nature. We verified that our
novel method of region-based pattern classification analysis of
MEG data allows for exploration of the spatial distribution of
brain activity without the need for a priori spatial constraints.
Our results are comparable to the localization of brain activity in
previous studies using fMRI and similar experimental conditions.
This consistency of sparse localization patterns provides a cross-
validation for the spatial resolution of the method. Additionally,
the vastly improved time resolution afforded by MEG signals
makes it uniquely suited for investigation of highly temporally
dynamic brain processes.

Secondly, the overall structure of the emergence of a
meaningful percept matched very well with the notion of three
stage processing (Del Cul et al., 2007). The earliest stage of
cortical processing, represents low-level visual data analysis
that distinguishes between any stimuli and is started at 50 ms
following stimulus onset and has maximal decodability accuracy
at 90 ms, the latency of the P1 component. Category-specific
processing, as revealed by relating the data to an appropriate
model requiring both within category similarity and between
category dissimilarity, started no earlier than 130 ms after
stimulus onset. The final stage observed in the study, reflected
meaning processing regardless of attribution of the object to a
specific category and started about 250 ms after stimulus onset.

Thirdly, we observed two heavily distinct spatiotemporal
patterns of brain activity underlying the second stage of visual
processing, that concerned the perceptual categorization of faces
and tools. The face specific pattern discriminating the faces from
both the tools and nonsense stimuli was related to bilateral
activation of ventral occipito-temporal areas at 140–170 ms, while
the tool-specific activation was shifted to the later time window
of 210–220 ms and comprised IPS of the left hemisphere. Below
we will speculate about potential nature of face specific binding

processes and suggest that tools, because of insufficiency of such
processing for this category, require later in time an additional
procedure that completes groupings between separate segments
to form a coherent representation of an object.

The final conclusion is based on the remarkable finding that
activity within face and tool specific spatiotemporal patterns have
different dynamics following procedural perceptual learning.
While tool-specific activity demonstrates common decrease in
amplitude as the perceptual task becomes easier, face-specific
activity shows an opposite effect in that amplitudes increase as the
stimuli become learned. If we assume there is a relation between
face-specific processing and value-dependent mechanism of
categorization, and tool-specific with a sensorimotor mechanism,
then this result would indicate that these two mechanisms differ
not only by localization in the brain and timing but also by
differential dynamics in their learning processes.

Region-Based Pattern Classification
Analysis of MEG Data Provides Both
Plausible Spatial Localization and
Millisecond Resolution for
Spatiotemporal Exploration of Neural
Processes
Recent studies using RSA have characterized the spatial
patterns of brain activity in the processing of distinct object
categories through their relationship to computational models
(Kriegeskorte et al., 2008; Raizada and Connolly, 2012; Anderson
et al., 2016). Nevertheless, the fine temporal dynamics of neural
processes that the brain uses to form meaningful representations
of objects remains largely ignored in this area of research because
of the predominant use of fMRI data as an input for RSA. It
is believed that current brain imaging techniques in isolation
cannot resolve the brain’s spatiotemporal dynamics because they
provide either high spatial or temporal resolution but not both.
fMRI-MEG data fusion has been proposed as a possible solution
of this problem (Cichy et al., 2016).

Here we offered another method that provides a way to extract
sufficiently precise spatial maps exclusively from MEG signals.
Firstly, a fine-scaled distributed inverse solution was obtained
before classification. Following this, vertices were combined in
moderately coarse atlas-based regions and only three principal
components of activities across each region were kept for
training classifiers. The information of these components for
every region preserved spatial specificity but was less sensitive
to inaccuracies arising from the inverse solution. These were
then submitted for time-resolved classification. Our method
is most similar to the spatiotemporal searchlight approach
(Su et al., 2012) but we suggest that it is more practical to
implement. Firstly, it solves the issue of across subject co-
registrations of analyzed spatial entries in a straightforward
way. Secondly, it makes an application of statistical parametric
tests more feasible because it notably reduces the number
of spatial entries and makes multiple comparison correction
less demanding. This property is useful because, as we have
shown, some regions were activated during more than a single
time window and thus it would be difficult to discover such
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behavior using approaches based upon non-parametric cluster-
based statistics.

The results presented here provide clear evidence that novel
pattern classification approach affords the capacity to go beyond
spatially limited region-of-interest analysis using MEG data, and
allows for spatially unbiased exploration of neural processes.
The “Stimulus recognizer” and “Meaningful category processing”
models have shown plausible spatial distributions of activity that
are unique to each model. Neural activity first processed in
the primary cortex is unique for all stimuli, with later activity
then spreading in the anterior, either ventral or dorsal directions
for faces and tools respectively. Regions displaying correlation
with models extracting activity specific for a certain meaningful
category processing have revealed a striking overlap with regions
discovered using fMRI. The most distinguished face specific
regions, displaying both significant and high-valued correlation
coefficients, were represented by bilateral IO, as known as
occipital face area, and FG comprising fusiform face area (Haxby
et al., 2000; Palermo and Rhodes, 2007; Rossion et al., 2011).
Significant tool specific regions were localized in the left IPS,
MTp, and VPM, a well-known network displaying tool preferred
activations (Chao and Martin, 2000; Lewis, 2006; Beauchamp
and Martin, 2007). This cross-validation for the spatial specificity
of the method strongly widens the applicability of MEG based
studies to the pursuit of scientific questions without the need for
spatial priors.

Three Successive Stages of the
Processing Underlying Visual Perception
In order to distinguish which one of the two alternative
processes, perceptual categorization or later response-related
brain procedures, causes the previously reported differential
spatial patterns of neuronal responses underlying faces and
tools perception it is necessary to separate the spatiotemporal
clusters of neuronal activity corresponding to different stages of
visual object identification. In this study, applying temporally
and spatially unbiased exploration method, we observed
three spatiotemporal clusters of neurofunctional activity
corresponding to low-level features analysis, category specific
feature binding and category independent meaning processing.
This three stages scheme matches well to the one that was first
proposed for face processing (Bruce and Young, 1986; Latinus
and Taylor, 2006), and has subsequently been expanded for any
category of objects (Del Cul et al., 2007).

Currently available information regarding the onset of cortical
processing indicates that the earliest moment at which signals
from retina passing the lateral geniculate body reach the cortex is
about 40–50 ms after stimulus onset. This matches the latency at
which MEG data start to distinguish between individual stimulus
patterns in sensor space (Cichy et al., 2014; Wardle et al., 2016).
Here we have replicated this result but based on source-space
data confined to particular regions within the cortex. The activity
related to the “Stimulus recognizer” model started to manifest
itself at 50 ms after stimulus onset in primary/secondary visual
regions. It reached a peak at 90 ms and then monotonically
decreased. In the spatial sense, it gradually decreased toward the

anterior direction preserving its spatial distribution during the
whole period of processing and largely restricted to the occipital
lobe. This activity profile speaks in favor of the predominantly
low-level feature processing extracted through relation to the
“Stimulus recognizer” model. Direct evidence that brain activity
at the time of early cortical evoked responses represents low-
level visual features processing has been introduced in a recent
MEG study by Ramkumar et al. (2013) in which processing of
spatial frequencies and orientations were separately extracted
and exact onset time of activity corresponding to these features
were discerned: 51 ms for spatial frequencies and 65 ms for
orientations.

The grouping capabilities of the first stage are only necessary
prerequisites for perceptual categorization because by themselves
they cannot establish a link between the statistics of sensory input
(Dumoulin and Hess, 2006) and the meaning that defines an
object’s placement within a category. Ultimately, the fundamental
question of how an emergent property such as meaning could
arise from sensory data should be considered within meta-system
frameworks like phase transitions and critical phenomena models
(Kozma et al., 2014) or gauge theory (Sengupta et al., 2016).
Tracking the exact details of the process by which spatial statistics
of sensory input are transformed into a space invariant and
meaningful percept was beyond the scope of the experiment.
We aimed to investigate characteristics on the macroscopic
scale and investigate the cortical localization as well as time
deployment of neuronal activity corresponding to emergence of
meaningful categorization. To this end, we applied a “Meaningful
category processing” model that captured particular category
membership by controlling higher dissimilarity between patterns
for exemplars across category boundaries rather than within the
category boundary. We found that the second stage of visual
cortical processing, which is responsible for the meaningful
binding of spatial image statistics, lasted for a time period
approximately from 130 to 240 ms after stimulus onset and
involved some regions of occipito-temporal and parietal areas
without engaging primary visual cortex.

It is worth noting that the application of an appropriate model
within RSA approach is a necessary but not sufficient condition
for correct extraction of activity corresponding to meaningful
category emergence. There are some experimental studies using
the similar RDM (Carlson et al., 2013; Cichy et al., 2014) that
reported much earlier onset times of distinguishability between
categories. We believe that the reason for this group’s finding
of such early onsets of category-specific processing is that in
these cases there was limited control for differences in low level
processing within categories. For example, in Cichy et al. (2014),
12 natural images of faces and bodies, that were similar in
shape and color, were used to control similarity within respective
categories. We argue that this is not sufficient to eliminate the
effect that similarities in the image statistics may give rise to
spurious group separation independent of its meaning. As the
resulting corresponding model performed mostly as a stimulus
differentiator and showed that distinction between face and
body categories was possible from 56 ms, the latency at which
individual images started to be distinguishable. In the present
study, we used two bitonal images of each category sharing few
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common low-level image statistics (even Mooney faces are badly
recognized by computer algorithms based on sensory data). Note
negative deflection of “Meaningful category” model time traces
(Figure 3) in the interval approximately from 50 to 120 ms
post-stimulus, where dissimilarity between all stimuli prevails
over categorical structure. This deflection confirms that in our
case category-specific activity was carefully controlled to avoid
influences from low-level processing. After careful extraction
of activity corresponding to perceptual categorization stage, we
found this state did not start earlier than 130 ms after stimulus
onset.

Complementary evidence in favor of this hypothesis was
presented in a recent study of Clarke et al. (2015) who
demonstrated that meaning begins to be represented in visual
processing during the second stage by showing that classification
of individual images is significantly improved by adding semantic
information from 200 ms after stimulus onset. The authors’
interpretation suggests that a model of object representations
based on combination of sensory (derived from HMax model)
and semantic measures provides a better account of underlying
brain activity at this point than visual statistics alone. This result
is in accordance with the line of evidences we present here: that
meaning should start to be essential for explaining the brain
activity during the perceptual categorization stage.

One important precaution should be taken when interpreting
our results. We are not providing a complete list of regions that
may contribute to processing of object categorization but only
those structures that operate in a way independent of retinotopy.
This is an inevitable consequence of the high selectivity of the
“Meaningful category processing” RDM analysis. We do not also
suggest that all tool processing for this period is limited to areas of
parietal cortex and starts at 200 ms. The relation to “Meaningful
category processing” model extracts only activity that is common
for all tools and represents “extra” processing which leads to their
delineation as a unified category of objects. In this respect, it is
worth to note that if some intermediate analysis take place (results
are not shown) where each individual image of tool is related
to a degraded “Meaningful category processing” model (which
does not require similarity within tool category) and then the
results are averaged across tool exemplars, the resulting spatial
map of active regions is more extensive including some ventral
regions but preserves dorsal prevalence. In the next subsection,
we discuss distinctions in different category binding mechanisms
for faces and tools, while here we point out that in both cases
categorization stage ends by about 240 ms after stimulus onset,
when it is replaced by supra-category processing.

Here we use the term “supra-category” to name a stage
operating in common for all category representation of meanings
whether they be pictorial, symbolic, or verbal. A recent study
has shown that after category selective encoding in posterior
areas, activity was shifted to anterior temporal, parietal and
frontal regions and was not specialized for category (Linden
et al., 2012). One possible explanation for the dissociation may
be that the sustained but not selective activation in widely
distributed regions across parietal, temporal, and prefrontal
cortex is related to multimodal concept processing (Visser
et al., 2012). The ultimate outcome of this stage is to perform

an organism’s response such as object naming (Grèzes and
Decety, 2002), dependent action (Beets et al., 2010), operating
within working memory (Linden et al., 2012), or introspection
(Frässle et al., 2014). A recent study has shown (Beets et al.,
2010) that the stability of a percept is affected by percept-
related actions in which congruent movements stabilize the
percept and incongruent movements destabilize the percept. This
phenomenon gives explanation as to why we chose the naming
paradigm instead of passive viewing for perception investigation,
despite the active debates related to it applicability. We believe
that any act of meaningful perception ends with an active
response, either overt or covert, and so verbal response in our
study was a small fee for explicit control of stimulus recognition.

Distinguishing Characteristics of Feature
Binding Mechanisms for Face and Tool
Perception
We asked which differences in cortical topography are related
to perceptual categorization and which of them reflect later
activation of response-related brain processes. To answer
these questions, we separated the spatiotemporal clusters of
neuronal activity corresponding to different stages of visual
object identification. We then applied a strict model (type
3 model, see Figure 1) to distinguish between faces and a
group of combined tool and nonsense stimuli while requiring
that there was similarity within each group (in particular, we
required that processing of tools was not distinguishable from
that of nonsense stimuli). We have detected corresponding
spatiotemporal patterns in ventral occipito-temporal regions, the
most salient in bilateral IO and FG areas, during an interval
from 140 to 170 ms post-stimulus presentation. The time window
of these patterns are within the interval expected to represent
the perceptual categorization stage so we can ascribe them to a
mechanism of face-specific feature binding.

When we applied similar type 3 model distinguishing between
tools and a group of combined face and nonsense stimuli we
have found tool-specific patterns in the regions, namely leIPS,
leMTp (with adjacent STSp) and bilateral VPM, that taken
together covers the well-known network of tool preferred areas
(Beauchamp and Martin, 2007). However, only the pattern
located to the leIPS occurred within the perceptual categorization
stage at time window 210–220 ms and should be related to the
tool-specific feature binding activity. By naming the third stage as
“supra-categorical” we do not intend to state that some category
dependent activity does not still occur after 250 ms. What we
suggest here is that the activity occurring outside the second
stage does not contribute into the categorical feature binding
processes and so the functions of the late tool preferring regions,
in particular MTp and VPM, should be associated with response-
related activity such as active report or introspection (e.g., Frässle
et al., 2014).

The analysis of spatiotemporal characteristics of the feature
binding related activity patterns reveals that, firstly, the locations
of processing for faces and tools have a pronounced bias to
ventral and dorsal visual streams respectively; and secondly, the
latency of a tool-specific processing is later than for face-specific
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processing. In what follows, we suggest that this dissociation
in time and space does not mean an existence of specialized
brain modules for particular category processing but reflects
differential involvement of regions depending on the depth of
experience with the objects of particular category.

For a long time, holistic processing was used to explain
what makes face recognition special. In a recent study using
transcranial magnetic stimulation technique it was shown that
rIO region of ventral visual stream (right occipital face area
in the original notation) is causally implicated in the type of
holistic detection that is required for perception of Mooney
figures and that such role is not face-selective (Bona et al.,
2016). In contrast, rIO does not appear to play a causal role
in detection of shapes based on bottom-up integration of local
components, demonstrating that its involvement in processing
of non-face stimuli is specific for holistic processing. In our
study, we observed that IO regions were the most prominent
areas revealing face specific processing while their activity did
not differentiate between tools and nonsense stimuli. Altogether
these results indicate that information in IO areas is mandatory
for holistic processing for presumably any category of perceptual
objects, but this with a particularly increased demand of this area
is required to drive the emergence of a whole percept from face
stimuli.

The straightforward consequence of these findings is that
the activation in some ventral visual stream regions is rather
holistic-specific than face-specific and could be caused not by an
appearance of a face per se but some characteristics of face, which
other objects also possess but to a lesser degree. In order to gain
an insight regarding the origins of this property, it is useful to
summarize findings from experimental studies using a composite
task paradigm (Richler and Gauthier, 2014). The essence of the
paradigm is that holistic processing is testing by indexing the
extent to which participants can ignore irrelevant information
within a whole face and selectively attend to face parts. First of
all, it was shown that holistic processing is caused by an influence
of processes that are automatically and mandatorily recruited for
the aligned faces and lead to failures of selective attention (Richler
et al., 2012). Second, a number of studies have shown (Gauthier
et al., 2000; Bukach et al., 2010; McGugin et al., 2014) that
expertise with non-face objects can lead to holistic processing,
with gradually increasing activity of face-selective areas in the
ventral visual stream. Altogether these results provide evidence
that the property that governs the recruitment of ventral regions
into processing, is determined by a depth of experience with the
object and its measure represents information relevance, different
from that identified by an online task control. We suggest that
this measure corresponds to a module of a vector in neural
value-dependent reference space (Edelman and Tononi, 2000).

We can attempt to summarize our findings in the following
information integration scheme (describing the categorization
stage only). Stimuli of both categories start to be processed
by means of value-dependent mechanism in the areas of
ventral stream. Different values for a criteria of information
integration can act in parallel by independent operators.
Each operator performs only one task, in that it detects
elements within an incoming sensory flow that could be

assimilated according to the corresponding value. A similar
scheme in some different context has been introduced by
Houtkamp et al. (2003) who have called it “figure-background
segregation.” On each level of hierarchy most “fed” values
are naturally selected (Edelman, 1993) to provide input to
the higher levels. Hierarchical structure of operators ensures
fast convergence to a structure of high-level values, which
defines the meaning of the object category, in our case,
faces. In the case of tools, the value-dependent mechanism
cannot extract sufficient information from sensory flow for
the unambiguous bias of competition up to the highest
level of the hierarchy. Instead, sensorimotor-based mechanisms
are recruited to solve the part-to-part problem of sensory
binding by using intermediate representations allocated by
value-dependent processing. In this case the emergence of
meaning is achieved through the additional integration of sensory
input based on sensorimotor associations that have been learnt
through experience, leading to an increased time of binding
processing when compared to categories of objects possessing
high subjective value.

Value-Dependent and
Sensorimotor-Based Feature Binding
Mechanisms Evoke Different Perceptual
Learning Effects for Faces and Tools
Multiple repetitions of the same stimuli in the present study
acted to reduce complexity of the bitonal images recognition
task. The hypothesis of the existence of two distinct feature
binding mechanisms predicts oppositely directed changes of
corresponding specific activities for faces and tools. The
perceptual learning of value-dependent mechanism results in a
change of the dynamical system’s control parameters in order
to tune them for better matching to stimulus influence. An
extremely simple but common example of an oscillator gives
a model for what is happening here. The learning (of fictional
“educable” oscillator) changes its natural frequency in such a way
that it coincides with the periodicity of the external force and
oscillator gets the opportunity to better assimilate the energy
of this force. In a similar way, increased synchronization and
subsequent intensification of category-specific activity can be
expected in the case of perceptual learning of value-dependent
mechanism. On the contrary, sensorimotor mechanism guides
execution of internally driven part-to-part integration task and a
learning reduces the neural load of this task through optimization
of synaptic pathways.

Therefore, the ventral value-dependent system activity should
increase as the stimuli become easier to recognize. In contrast,
dorsal sensorimotor-based system should adapt to the task by
learning the solution, requiring less efforts and therefore a
reduction in the activity. This is exactly what we observed in the
study when we were investigating repetition dependent behavior
upon the responses for face and tool specific spatiotemporal
patterns. We saw that the amplitude of neuronal activity in rIO
and rFG in the time window of 140–170 ms during face stimuli
processing gradually increased, whilst the amplitude of neuronal
activity in leIPS in time window 210–220 ms during tool stimuli
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processing decreased for the entirety of the first experimental
section.

Repetition suppression is a ubiquitous effect in neuroimaging
studies. It even gives a ground for a “adaptation paradigm”
which is based on the notion that only those sources of signal
that are critically involved in the processing of a stimulus will
show suppression to repeated presentations of that stimulus
(e.g., Avidan et al., 2002). Repetition amplitude enhancement is
a rarer phenomenon. Firstly, we point out that the repetition
conditions in our experiment were different from that which
are common in repetition suppression paradigms. We did not
present the same image (or images of the same category) in a
row but mixed it in pseudorandom order with the remainder
of the images, such that between two presentations of the same
stimulus an average of nine other image presentations took place.
In the similar conditions, Schendan and Kutas (2003) found
reliable repetition enhancement effects at 148 ms, where the
vertex P150 was more positive for repeated objects than for novel
objects. Furthermore, Morel et al. (2009) using combined electro-
encephalography and MEG recording have demonstrated that
face-selective components at 170 ms after stimulus presentation
showed repetition enhancement selective to neutral faces, with
greater amplitude for emotional than neutral faces on the first but
not the second presentation. Authors have suggested that these
differential repetition effects may reflect valence acquisition for
the neutral faces due to repetition. Such a combined influence
of emotion- and learning-related factors of face encoding speaks
in favor of the hypothesis about value-dependent nature of the
experience that shapes category of faces.

Complementary evidence of the relation of an object’s
recognizability with an increased activity of the value system
during the perceptual categorization stage has been reported
in the literature. Anderson and Phelps (2001) have applied
a variant of the attentional blink paradigm and have shown
that emotional targets were considerably more detectable than
neutral ones, in an effect that required the intact amygdala. In
electroencephalographic experiments it is difficult to measure
the activity of the amygdala due to its small size and deficiency
of laminar organization (see, however, Streit et al., 2003;
Cornwell et al., 2008), therefore cortical regions supporting
emotional value should be considered. Several lines of evidence
from lesion, electrophysiological and anatomical studies indicate
that the anterior insula in the right hemisphere aids in the
evaluation of stimulus salience (Eckert et al., 2009). In the
present study, we observed that activity in the right insula
during the time window 140–170 ms significantly distinguished
face category but did not distinguish the tool category from
nonsense stimuli. A similar result showing face specific activity
in bilateral insula ∼140 ms after stimulus onset was obtained
in the recent MEG study of face and body perception (Meeren
et al., 2013). Finally, a remarkable result indicating that
naked bodies in contrast to clothed ones elicited N170 even
larger than faces did (Hietanen and Nummenmaa, 2011) has
demonstrated that an elevated emotional significance of stimuli
can even change common face preferring behavior of the
N170 component. Altogether, this results offer a support to the
notion that values assigned to the incoming information boost

integration processes in the ventral visual stream and increase
the likelihood of the emergence of a meaningful and reportable
percept.

Summary
In this study, we made MEG recordings to which we applied a
novel region-based multivariate pattern classification approach.
Using this tool in combination with RSA we have extracted
activity associated with three qualitatively distinct processing
stages of visual perception. In contrast with the regions that have
been reported elsewhere for differential activation recognition
of faces and tools, we presented differences in processing in
terms of both precise timing and brain regions involved. We
found that these differences occur both at the categorical stage,
as well as during a later stage of supra-categorical processing.
Given the long lasting discussion on the attribution of the
observed differences to a perception per se, or higher-tier
cognitive processes (Jolicoeur et al., 1984; Chan et al., 2011;
Frässle et al., 2014; Reichert et al., 2014), we believe that obtained
findings are of importance. Moreover, we provided evidence
for the opposing action of stimulus repetition effect for faces
and tools, i.e., repetition suppression for tools and repetition
enhancement for faces. Since both effects were presented at
the categorization stage and were expressed in the critical
nodes of the respective categorization networks—FG and IO
for faces, and IPS for tools—they further support the claim
that faces and tools are processed differently already at the
“intermediate” categorization stage. We have discussed these
results in a framework that assumes the existence of two
different binding mechanisms for categories that are shaped
predominantly by either value-dependent or sensorimotor
experience.
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